How Healthcare Organizations Can Turn Big Data Into Smart Data | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

How Healthcare Organizations Can Turn Big Data Into Smart Data

January 10, 2014
by Rajiv Leventhal
| Reprints
Industry expert: “Big data is closer than it appears”
Shane Pilcher

Only a very small percentage of healthcare organizations today seem to be leading the way in healthcare data analytics, while the vast majority are very early in the business intelligence (BI)/analytics process, or haven’t even started. As a result, organizations seem to see big data as something that’s off in the very distant future; for most of them, anything outside of five years is almost nonexistent, says Shane Pilcher, vice president at the Bethel Park, Pa.-based Stoltenberg Consulting.

It is important to remember that big data is more than just a sea of information; it is an opportunity to find insights in new and emerging types of data and content.  So what are hospitals and healthcare organizations forgetting in their paths for eventual success with big data? According to Pilcher, the answer is “smart data.” In the below interview with HCI Assistant Editor Rajiv Leventhal, Pilcher talks about the difference between big data and smart data, strategies for collecting the right data, and advice for physicians in getting on board with the movement.

When you say “smart data,” what do you mean? How does smart data differ from big data?

The data that organizations are collecting today that they will be using for big data are going into this black hole (usually the data warehouse) somewhere. They are happy that they’re collecting it and preparing for when big data finally does come around to their organization, but if they aren’t careful and if they don’t monitor what they’re recording, the quality and quantity of the data when it’s to be used five years from now will not be sufficient enough. These organizations might think that they have five years of historical data to start their analytics, but in reality, the data is often not of the quality or quantity, or even the type, that is needed. That’s the smart data—that step that focuses on the type of data that they have, the volume of data, and also the validity of that data. You have to make sure that what you’re collecting is what you’re expecting.

Do healthcare organizations recognize this need?

Big data is a common theme with CIOs at healthcare organizations everywhere—they know it’s coming. However, there are CEOs at their hospitals who hear about “big data” at conferences and have no idea what it is, yet they will still come back and tell their CIOs that they “have to be doing big data.” And thus, it’s left in the lap of CIOs. But for the CIOs, they have Stage 2 of meaningful use and ICD-10 coming [for many providers, Stage 2 is here already], so they are not in the best place to be dealing with big data. So for the most part—except for about 5 percent of organizations out there, they tend to move it to sideline. It’s like looking at the side view mirror on your car and not seeing the message, “images are closer than they appear.” They see big data reflected, but it’s a lot closer than what they’re thinking. For the places that have limited resources and time, this is something that is being pushed to the side until they can get to it down the road.

How can organizations better ensure they are collecting the right quantity and quality of data?

First, you need to start developing your strategy now. Using the standard data models and approaches other industries are using doesn’t necessarily translate to healthcare IT. The amount of data, the data structure, and the data model is off the chart compared to even something as large as automotive manufacturing—the complexity isn’t even comparable. You have to develop as you go. The biggest thing I can suggest, as this industry is developing and our tools are growing, is to develop those peer networks with other healthcare leaders that are already further down the road than you. About 5 percent of healthcare organizations are right now in “stage two” of the data maturity model where they could start looking at predictive and prescriptive approaches to data. Those that are on the forefront of data analysis and intelligence are going to be critical to the rest of the industry following along. So learn from and use your peers.

And again, the quality of the data is critical. Organizations often think that they initiated the data collection, it’s implemented, and it’s working, so they turn to next project, thinking that when they’re ready, they will have it there in the warehouse. But then when it gets closer to the time to use the data, they don’t have the quantity that they thought they had. If you are collecting the wrong information or it’s incorrect, when you do your analysis, you will get wrong results and not even know it. Decisions could be devastating because your data was inaccurate leading to wrong analysis.

So you also need to assess the data on a regular basis constantly and ensure that what you think you’re collecting is actually what you’re getting. Then you can depend on the accuracy of that data when it’s time to start analyzing. Being able to analyze unstructured data for trends is very difficult, almost borderline impossible.  Yet, about 80 percent of hospitals expect to use unstructured data in their data warehouse. Turning that data into structured data, or finding a tool that can do that for you with accuracy, becomes a huge push. If organizations are not prepared for that, they are racing against time at the last minute.

You need to trust the accuracy of your data. You know that your electronic health record (EHR) is collecting certain data and dumping into the data warehouse. But is anything happening with that transfer of data that is changing it in any way? Is it remaining accurate? Was it accurate to begin with? I wouldn’t say there is an issue of incorrect data in EHRs, but people can’t 100 percent say, “Yes, it’s ready to be analyzed.”

What are some other challenges organizations are facing with big data?

Time and money are the two big ones, of course. Everyone has a limited amount of time, with more projects and initiatives than time to do them in. And dollars are tight for healthcare organizations, so the things that tend to be more in the future get less priority when it comes to budgeting than things needed for today.

But staffing is also a problem—having trained staffs who know how to analyze and know how to approach intelligence processes can be challenging. A 2012 CHIME CIO survey, from last September, found that 67 percent of healthcare CIOs were reporting IT staff shortages. The issue is that organizations either didn’t have enough staffers, or didn’t have anyone internally with that skill set. At the end of the day, almost all organizations are having problems making up a BI department.

What is your advice to helping physicians get on board with big data?

This is definitely adding to the challenge for physicians. In many cases, a lot of them can view EHRs as taking up more of their time and causing more of a workload rather than being more efficient. Often, that is accurate. EHRs do not save you time, not at the beginning. And that’s why physicians tend to be resistant; they understand the need for meaningful use dollars, and that has pushed them in the direction, even though they have been reluctant to go there in the past.

But the day we can take that information and turn it into a tool for them to better take care of their patients, creating better outcomes at a lower cost, will be a benefit to all of the efforts and work they have been doing. That is why hospitals that have implemented BI initiatives; rather than just focus on the financial, they have to focus on the patient care strategies and initiatives. Because it’s not until then do doctors see a purpose for their extra work and start to get on board.


The Health IT Summits gather 250+ healthcare leaders in cities across the U.S. to present important new insights, collaborate on ideas, and to have a little fun - Find a Summit Near You!


/article/how-healthcare-organizations-can-turn-big-data-smart-data

See more on

betebettipobetngsbahis