UC Berkeley Awarded $3.6M NIH Grant to Apply Big Data to Infectious Disease Surveillance | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

UC Berkeley Awarded $3.6M NIH Grant to Apply Big Data to Infectious Disease Surveillance

February 3, 2017
by Heather Landi
| Reprints

The National Institutes of Health (NIH) awarded a $3.6 million, five-year grant to the University of California, Berkeley School of Public Health to develop new approaches for simulating and optimizing surveillance networks that detect infectious diseases.

For the project, the research team will enlist big data to tackle major challenges facing the monitoring of global infectious diseases, such as tracking the progress of disease elimination campaigns, detecting co-infections and maximizing detection of rare diseases in high-risk populations. The researchers will focus on high-priority global infections diseases, including tuberculosis, malaria and schistosomiasis, and the team will work in partnership with practitioners at the U.S. and Chinese Centers for Disease Control and Prevention.

Project leader Justin Remais, associate professor of environmental health sciences at the School of Public Health, said in a statement, “Targeted and efficient surveillance systems are critical to detecting outbreaks, tracking emerging infections and supporting infectious disease control efforts, particularly in low- and middle-income countries where estimating the distribution of disease is a major challenge. We need to take advantage of new, vast health datasets to identify surveillance strategies that are effective under changing epidemiological and environmental conditions.”

The research is funded by the National Institute of Allergy and Infectious Diseases, under the NIH’s Spatial Uncertainty funding opportunity. Collaborators on the project include statisticians and epidemiologists at the Beijing Institute for Microbiology and Epidemiology, Emory University and the University of Florida.

Infectious disease surveillance systems provide vital data that serve as the foundation of evidence-based programs to improve public health. Globally, surveillance systems vary widely in their design, including how, where and how frequently they survey populations for infections, and the specific diagnostic approaches used. Designing modern systems that provide reliable and timely estimates of disease occurrence, particularly among high-risk groups, is crucial to reducing the burden of global infectious diseases.

The new NIH-funded project, titled spatio-temporal data integration methods for infectious disease surveillance, aims to develop statistical techniques for integrating complex data from multiple surveillance systems, provide critical insights into how surveillance systems function, and lead to key advances in surveillance informatics. The research team will develop algorithms that predict how surveillance systems perform under different configurations, and can estimate the optimal allocation of surveillance resources under various constraints.

“We will feed the insights gained from simulation studies back into the redesign of real-world surveillance systems, helping our partners design systems that are more effective at detecting infections at the outset of an epidemic, for instance, or as disease elimination is approached,” Remais said.

 

Get the latest information on Health IT and attend other valuable sessions at this two-day Summit providing healthcare leaders with educational content, insightful debate and dialogue on the future of healthcare and technology.

Learn More

Topics

News

Study: Use of EHRs Does Not Reduce Administrative Costs

A recent study by Duke University and Harvard Business School researchers found that costs for processing a single bill ranged from $20 for a primary care visit to $215 for an inpatient surgical procedure, or up to 25 percent of revenue.

Kibbe to Step Down as CEO of DirectTrust

David Kibbe, M.D., M.B.A., announced he would step down as president and CEO of DirectTrust at the end of the year.

Sequoia Project Exec Appointed to HITAC’s Interoperability Task Force

The Sequoia Project’s CIO/CTO, Eric Heflin, has been appointed to the Health Information Technology Advisory Committee’s (HITAC) U.S. Core Data for Interoperability Task Force (USCDI).

Healthcare Orgs Report Improvements in Quality, Cost Using Data and Analytics

In 2017, nearly three dozen organizations ranging in size from small community hospitals to some of the nation’s largest integrated delivery systems documented 125 improvements in quality, cost and efficiency using technology and improvement processes.

Consortium to Promote Implementation of a FHIR Genomics Platform

At this week’s HL7 Genomics Conference in Washington, D.C., a new group was introduced to promote implementation of a FHIR Genomics platform.

Cedars-Sinai Collaborates on Organs-on-Chip Precision Medicine Project

Scientists at Los Angeles-based Cedars-Sinai, in partnership with biotechnology startup Emulate, are pioneering a Patient-on-a-Chip program to help predict which disease treatments would be most effective based on a patient's genetic makeup and disease variant.