UC Berkeley Awarded $3.6M NIH Grant to Apply Big Data to Infectious Disease Surveillance | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

UC Berkeley Awarded $3.6M NIH Grant to Apply Big Data to Infectious Disease Surveillance

February 3, 2017
by Heather Landi
| Reprints

The National Institutes of Health (NIH) awarded a $3.6 million, five-year grant to the University of California, Berkeley School of Public Health to develop new approaches for simulating and optimizing surveillance networks that detect infectious diseases.

For the project, the research team will enlist big data to tackle major challenges facing the monitoring of global infectious diseases, such as tracking the progress of disease elimination campaigns, detecting co-infections and maximizing detection of rare diseases in high-risk populations. The researchers will focus on high-priority global infections diseases, including tuberculosis, malaria and schistosomiasis, and the team will work in partnership with practitioners at the U.S. and Chinese Centers for Disease Control and Prevention.

Project leader Justin Remais, associate professor of environmental health sciences at the School of Public Health, said in a statement, “Targeted and efficient surveillance systems are critical to detecting outbreaks, tracking emerging infections and supporting infectious disease control efforts, particularly in low- and middle-income countries where estimating the distribution of disease is a major challenge. We need to take advantage of new, vast health datasets to identify surveillance strategies that are effective under changing epidemiological and environmental conditions.”

The research is funded by the National Institute of Allergy and Infectious Diseases, under the NIH’s Spatial Uncertainty funding opportunity. Collaborators on the project include statisticians and epidemiologists at the Beijing Institute for Microbiology and Epidemiology, Emory University and the University of Florida.

Infectious disease surveillance systems provide vital data that serve as the foundation of evidence-based programs to improve public health. Globally, surveillance systems vary widely in their design, including how, where and how frequently they survey populations for infections, and the specific diagnostic approaches used. Designing modern systems that provide reliable and timely estimates of disease occurrence, particularly among high-risk groups, is crucial to reducing the burden of global infectious diseases.

The new NIH-funded project, titled spatio-temporal data integration methods for infectious disease surveillance, aims to develop statistical techniques for integrating complex data from multiple surveillance systems, provide critical insights into how surveillance systems function, and lead to key advances in surveillance informatics. The research team will develop algorithms that predict how surveillance systems perform under different configurations, and can estimate the optimal allocation of surveillance resources under various constraints.

“We will feed the insights gained from simulation studies back into the redesign of real-world surveillance systems, helping our partners design systems that are more effective at detecting infections at the outset of an epidemic, for instance, or as disease elimination is approached,” Remais said.

 

Get the latest information on Healthcare Analytics and attend other valuable sessions at this two-day Summit providing healthcare leaders with educational content, insightful debate and dialogue on the future of healthcare and technology.

Learn More

Topics

News

Protenus: Hacking Incidents are Quickly Discovered, But Insiders Go Undetected

A report on healthcare data breaches in July and August finds that while hacking incidents are quickly detected, insider breach incidents continue to go unnoticed, which can have a significant impact on healthcare organizations and patients.

Survey: Hospital CEOs See Digital Innovation as Critical, But Significant Roadblocks Remain

More than 75 percent of C-level executive healthcare leaders believe that digital innovation is important to an organization’s long-term strategy, but more than half acknowledge that they are holding off on innovation due to lack of capital and fear of creating unintended operational burdens.

New Patient-Centered Studies Take Advantage of PCORnet Infrastructure

The Patient-Centered Outcomes Research Institute (PCORI) board of governors recently approved $27 million in grant funding for several patient-centered research studies that take advantage of the expanding informatics infrastructure of PCORnet.

Nurses, Physicians Use Personal Devices Even When BYOD is Prohibited

Some seven in 10 (71 percent) hospitals now allow BYOD (bring your own device) in the workplace, according to a new survey, which also found that some healthcare professionals use personal devices for work even when BYOD is not allowed.

In Op-Ed, CMS Signals “New Direction” for Innovation Center, Issues Request for Information

In an op-ed in the Wall Street Journal on Tuesday, CMS Administrator Seema Verma said the Trump Administration plans to lead the Center for Medicare and Medicaid Innovation “in a new direction” to give providers more flexibility with new payment models and to increase healthcare competition.

ONC Seeking Feedback on Interoperability Standards Advisory

The Office of the National Coordinator for Health IT (ONC) is seeking comment on the Interoperability Standards Advisory (ISA) in advance of the 2018 Reference Edition publication.