UCSF Partners with GE on Algorithm Development for Clinical Support | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

UCSF Partners with GE on Algorithm Development for Clinical Support

November 28, 2016
by Rajiv Leventhal
| Reprints

UC San Francisco’s Center for Digital Health Innovation and GE Healthcare have announced a partnership to develop a library of algorithms that will look to empower clinicians to make faster and more effective decisions.

The first wave of algorithms, which officials of the organizations said are “deep learning—complex problem-solving formulas—” aims to expedite differential diagnosis in acute situations such as trauma, to speed treatment, improve survival and reduce complications. These algorithms can be deployed worldwide via the GE Health Cloud and smart GE imaging machines, sharing the research of healthcare leaders with clinicians around the world who have varied expertise. They will aim to allow doctors to make better decisions about the diagnosis and management of patients with some of the most common and complex medical conditions.

Officials said the algorithms will be used to ensure providers around the world can access new knowledge and insights delivered through deep learning—a method by which machines can rapidly generate new levels of clinical and operational value from large imaging and textual data sets in ways that traditional machine learning methods cannot.

And, as algorithms are trained and the library of available algorithms expands, the associated applications will have the potential to do everything from predicting patient trajectories, to automating the triage of routine care, to improving process efficiency and enabling the development of more personalized therapies. By rapidly delivering information to clinicians about abnormalities, inefficiencies and personalized interventions, algorithms are designed to help providers improve diagnostic accuracy and patient outcomes, as well as improve clinical workflows and productivity, officials said.

One early example of an algorithm under development is a solution for pneumothorax, or a collapsed lung. The algorithm will be focused on teaching machines to distinguish between normal and abnormal scans so clinicians can prioritize and more quickly treat patients with pneumothorax, which can be a life-threatening condition.

Over the course of the partnership, GE Healthcare and UCSF will look to expand opportunities to integrate data not only from a variety of imaging technologies such as CT, MR and X-ray, but will also incorporate clinical data sets from the electronic health record (EHR) and other sources to enrich algorithm development and improve sensitivity, the organizations’ officials said.

“With this partnership, we have the opportunity to leverage the technical expertise of one of the largest providers of medical technology globally and the clinical and research expertise of UCSF, one of the largest recipients of National Institutes of Health (NIH) funding, in order to make the promise of precision healthcare a reality,” Michael Blum, M.D., associate vice chancellor for informatics, director of CDHI and professor of medicine at UCSF, said in a statement. “Next generation data science techniques have already transformed the industrial and consumer world. With this collaboration, these technologies will be applied to our clinical data and images to provide clinicians with actionable information in near real-time. Together, we will develop tools and algorithms that will allow clinicians and researchers to identify problems and ask questions that are only achievable with vast computing power and datasets.”

Get the latest information on Health IT and attend other valuable sessions at this two-day Summit providing healthcare leaders with educational content, insightful debate and dialogue on the future of healthcare and technology.

Learn More



Study will Leverage Connecticut HIE to Help Prevent Suicides

A new study will aim to leverage CTHealthLink, a physician-led health information exchange (HIE) in Connecticut, to help identify the factors leading to suicide and to ultimately help prevent those deaths.

Duke Health First to Achieve HIMSS Stage 7 Rating in Analytics

North Carolina-based Duke Health has become the first U.S. healthcare institution to be awarded the highest honor for analytic capabilities by HIMSS Analytics.

NIH Releases First Dataset from Adolescent Brain Development Study

The National Institutes of Health (NIH) announced the release of the first dataset from the Adolescent Brain Cognitive Development (ABCD) study, which will enable scientists to conduct research on the many factors that influence brain, cognitive, social, and emotional development.

Boston Children's Accelerates Data-Driven Approach to Clinical Research

In an effort to bring a more data-driven approach to clinical research, Boston Children’s Hospital has joined the TriNetX global health research network.

Paper Records, Films Most Common Type of Healthcare Data Breach, Study Finds

Despite the high level of hospital adoption of electronic health records and federal incentives to do so, paper and films were the most frequent location of breached data in hospitals, according to a recent study.

AHA Appoints Senior Advisor for Cybersecurity and Risk

The American Hospital Association (AHA) has announced that John Riggi has joined the association as senior advisor for cybersecurity and risk.