Automated Prediction Alert Helps Identify Patients at Risk for 30-Day Readmission | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

Automated Prediction Alert Helps Identify Patients at Risk for 30-Day Readmission

November 27, 2013
by John DeGaspari
| Reprints
Flagging tool aims to reduce hospital readmissions

An automated prediction tool which identifies newly admitted patients who are at risk for readmission within 30 days of discharge has been successfully incorporated into the electronic health record of the University of Pennsylvania Health System. The tool, developed by researchers at the Perelman School of Medicine, is the subject of a study published in the December issue of the Journal of Hospital Medicine.

According to the Penn research team, having been admitted to the hospital two or more times in the 12 months prior to admission is the best way to predict which patients are at risk for being readmitted in the 30 days after discharge. Using this information, the automated tool is able to identify patients as being “high risk” for readmission and creates a “flag” in their electronic health record. Upon admission of a high-risk patient, the flag appears next to the patient's name in a column titled “readmission risk.” The flag can be double-clicked to display detailed information relevant to discharge planning including inpatient and emergency department visits over the previous 12 months, as well as information about the care teams, lengths of stay, and problem(s) associated with those prior admissions.

“The results we've seen with this tool show that we can predict, with a good deal of accuracy, patients who are at risk of being readmitted within 30 days of discharge,” said lead author Charles A. Baillie, M.D., an internal medicine specialist and fellow in the Center for Clinical Epidemiology and Biostatistics at Penn Medicine. “With this knowledge, care teams have the ability to target these patients, making sure they receive the most intensive interventions necessary to prevent their readmission.”

Interventions proven to help reduce 30-day readmissions include enhanced patient education and medication reconciliation on the day of discharge, increased home services to provide a safe landing, follow up appointments soon after discharge, and follow-up phone calls to ensure an extra level of protection. In the process of medication reconciliation, pharmacists compare a patient's current hospital medication orders to all of the medications that the patient was taking at home prior to their hospital admission.

In support of the study, the Penn Medicine Center for Evidence-based Practice identified in the published literature a number of variables associated with readmission to the hospital, including: prior admissions, visits to the emergency department, previous 30-day readmissions, and the presence of multiple medical disorders.

Using two years of retrospective data, the team examined these variables using their own local data and found that a single variable—prior admission to the hospital two or more times within a span of 12 months—was the best predictor of being readmitted in the future. This marker was integrated into the electronic health record and was studied prospectively for the next year. During that time, patients who triggered the readmission alert were subsequently readmitted 31 percent of the time. When an alert was not triggered, patients were readmitted only 11 percent of the time.

"By automating the process of readmission risk prediction, we were able to provide risk assessment quickly and efficiently in real time, enabling all members of the inpatient team to carry out a coordinated approach to discharge planning, with special attention paid to those identified as being at the highest risk for readmission," said Craig A Umscheid, M.D., MSCE, assistant professor of Medicine and Epidemiology, director of the Penn Medicine Center for Evidence-based Practice, and senior author on the study.

Topics

News

Community Data Sharing: Eight Recommendations From San Diego

A learning guide focuses on San Diego’s experience in building a community health information exchange and the realities of embarking on a broad community collaboration to achieve better data sharing.

HealthlinkNY’s Galanis to Step Down as CEO

Christina Galanis, who has served as president and CEO of HealthlinkNY for the past 13 years, will leave her position at the end of the year.

Email-Related Cyber Attacks a Top Concern for Providers

U.S. healthcare providers overwhelmingly rank email as the top source of a potential data breach, according to new research from email and data security company Mimecast and conducted by HIMSS Analytics.

Former Health IT Head in San Diego County Charged with Defrauding Provider out of $800K

The ex-health IT director at North County Health Services, a San Diego County-based healthcare service provider, has been charged with spearheading fraudulent operations that cost the organization $800,000.

Allscripts Touts 1 Billion API Shares in 2017

Officials from Chicago-based health IT vendor Allscripts have attested that the company has reached a new milestone— one billion application programming interface (API) data exchange transactions in 2017.

Dignity Health, CHI Merging to Form New Catholic Health System

Catholic Health Initiatives (CHI), based in Englewood, Colorado, and San Francisco-based Dignity Health officially announced they are merging and have signed a definitive agreement to combine ministries and create a new, nonprofit Catholic health system.