Laying the Foundations for the New Healthcare: A Map of the New, Data-Driven Landscape | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

Laying the Foundations for the New Healthcare: A Map of the New, Data-Driven Landscape

March 28, 2017
by Mark Hagland
| Reprints
IT leaders at organizations like Geisinger Health, VITL, and Orlando Health are offering maps for success in laying the foundations for enterprise-wide analytics
Click To View Gallery

The Danville, Pa.-based Geisinger health System and the Burlington, Vt.-based Vermont Information Technology leaders (VITL), that state’s statewide health information exchange (HIE), are among those moving forward very rapidly, and showing the way to a new future.

At Geisinger Health, senior IT leaders, including senior vice president and CIO John Kravitz, Bipin Karunakaran, the vice president in charge of data management, and Joseph Scopelliti, IT director, data management, have been helping to lead their colleagues forward in moving to leverage data and analytics, with their major focus the creating of a Unified Data Architecture (UDA), which integrates all of the analytic platforms at Geisinger Health System. The key component of the UDA has been the creation of the Big Data (Hadoop) platform, the creation of which was the first phase of the project (in that, they say, the Armonk, N.Y.-based IBM Healthcare has been a partner). In a one-year timeframe, the team established a big-data platform, based on Hadoop and other open-source components.

What is key here has been the push on the part of the organization’s senior IT executives to facilitate robust end-user analytics self-service, a goal that has required very significant foundational IT architecting. “In the past, if data analysts wanted to do some research or analysis, they would have to request research from the data team,” Scopelliti notes. “Now, all of a sudden, with the data warehouse, they could do this themselves, and data analytics exploded, in a good way. And IBM came in and helped us with this. And we ran with that until 2012. And then we decided that we needed a different data warehouse, so we moved to a TeraData data warehouse with stronger computing capability. And we’re still running that. We have thousands of reports and dashboards that are running on clinical decision support information systems.”

Joseph Scopelliti

Webinar

Experience New Records for Speed & Scale: High Performance Genomics & Imaging

Through real use cases and live demo, Frank Lee, PhD, Global Industry Leader for Healthcare & Life Sciences, will illustrate the architecture and solution for high performance data and AI...

Ultimately, what is emerging is exactly what Kravitz, Karunakaran, Scopelliti, and their colleagues have been intending: a hyper-robust data platform that will allow for a new generation of data use, data sharing, and data analysis. Has it been hard work? Definitely, Scopelliti testifies. “Last summer,” he says, “we were putting in 10 to 12-hour days, six to seven days a week, to create the Hadoop platform. But that platform is a key component of the UDA. A colleague and I did a presentation at a conference a few months back, and we made a statement: Most people in healthcare see a big data platform as a supplement; they’re very hesitant to put all their eggs into one basket. But we see this as a replacement. We think we can retire the data warehouse, and that the UDA will effectively take its place, with most of the work being on the Hadoop platform. And our goal is to achieve that within 18 months.”

What’s more, Scopelliti says, in order to do this, “You’re taking all the traditional data warehouse sources—roughly 20, including the Epic EHR [from the Verona, Wis.-based Epic Systems Corporation], other clinical data, financial data, claims data—and channeling all those sources into the data platform. But the key is that the team wrote a data ingestion pipeline, and they wrote it in Map-Reduce and Java code. And so the idea is that it makes it very accessible—it allows us to ingest new source data very quickly. Now we have a quick way of ingesting data into the Hadoop platform. So you build the hardware infrastructure, set up the underlying code to ingest data—and now, we have the task of migrating all of the existing analytics programs into that infrastructure. My team’s primary task is the building and maintaining of the hardware and software for this program. And any new development, we’re trying to do in the new platform.”

John Kravitz

Vermont’s Comprehensive Push Forward with Actionable Data

At VITL up in Vermont, Michael Gagnon, the HIE’s chief technology officer, reports that his organization has spent several years developing the infrastructure to support robust data analytics work on the part of all of the HIE’s participant organizations. VITL, which officially opened in 2005, was born out of public-private collaboration, and that collaboration continues to fuel its pioneering work. VITL was created by the Vermont Association of Hospitals and Health Systems, in conjunction with the state government of Vermont. It now encompasses 14 hospitals, all 11 of the state’s hospital organizations, plus two hospitals in New York and one in New Hampshire, as well as 130 medical practices. “We knew that we’d be collecting data for population health early on,” Gagnon says. “Even our first HIT plan anticipated a hybrid data model between a federated model, the de rigueur model at the time, and a centralized model with a data repository that could be used for population health.”

Michael Gagnon

After necessarily switching core vendors—they are now using Medicity as their core HIE vendor—Gagnon says, “We built out our own infrastructure to effectively build a clinical data warehouse. So we’ve been collecting all CCDs [continuity of care documents], all ADTs [admissions, discharges, and transfers], all lab reports, all transcribed reports, all immunizations, into this repository for two years now. And that’s presented opportunities and challenges. But it has already proven itself to be quite effective with our accountable care organization in the state.” What’s more, the volume of data being exchanged has grown dramatically, to the point where nearly a half-million CCDs are being exchanged now every month, and about 5 million clinical messages a month are being exchanged, “in a state of only about 650,000 or so,” as he points out. In addition, he notes, VITL has gone live with natural language processing software (from the Alphen aan den Rijn, Netherlands-based Wolters Kluwer) that is “converting labs to LOINC and problem lists to SNOMED and medications to RxNorm, and so on and so forth; a lot of different terminologies are involved, and there’s a fair amount of work in mapping things out, but it has a lot of synonyms.” As a result, he says, their system understands that, for example, “glycated hemoglobin” is the same as “hemoglobin A1C.” Then, he notes, another software program processes clinical messages, “So that when we get the HL7 messages, that’s our first level of input and processing, and from there, we run them against the terminology services engine”—Rhapsody from the Scottsdale, Ariz.-based Orion Health—“and we take all the CCDs—and we’re pretty proud of the fact that we wrote our own CCD parser that disassembles them down into their individual data elements. And that’s really rocketed us forward.”

At Orlando Health, a Focus on Sepsis

All kinds of patient care organizations are making use of analytics now, as their use accelerates rapidly across the U.S. healthcare system. At the six-hospital Orlando Health, Eric Rose, Pharm.D., manager of corporate clinical decision support and pharmacy informatics, is helping to lead an initiative, leveraging the Vigilianz Intelligence platform to leverage analytics to detect and manage sepsis incidents. So far, the initiative has documented advances in a carefully launched pilot. “Our primary approach,” Rose explains, “has been to have the charge nurse in our pilot units a couple of times per shift go into the tool and look for patients with a worsening trend in their case. I’ve been comparing this tool to how meteorologists use the ‘cone of prediction’/’cone of uncertainty’ to predict hurricanes.”

Essentially, Rose says, the predictive tool plays to the strength of data-driven tools, by alerting nurses on the health system’s medical/surgical units to worsening trends among patients on those units, rather than requiring clinicians to search existing data for trends. And though he and his colleagues don’t yet have major data to document results, it’s very clear anecdotally that, since last July when the pilot was started, nurses are feeling more confident that they are spotting the signs of potentially emerging sepsis far faster.

There are many practical implications of this, Rose says. “Ultimately, I think that this will allow us to better focus our human resources. If we have a limited number of staff with a given area of expertise, and we can provide these predictive models and a pre-sorted list of patients with potential readmission risk or sepsis risk or falls risk, rather than reacting after the event, if we can identity folks in advance, before they reach an adverse event, that’s the goal.”

Putting it all Together—New Implementational Models

Ultimately, all of those interviewed for this article agree: this journey forward into the new data-driven world will be a long, complex, challenging one. Scopelliti, Gagnon, Rose, and their colleagues at Geisinger, VITL, and Orlando Health all emphasize that healthcare IT leaders must begin now to lay the foundations for the new world that the U.S. healthcare system is moving into and through. It is a world that will require that the leaders of patient care organizations think on a deep, as well as broad, strategic level, about what they need to do to support and facilitate population health management, accountable care, and value-based care delivery and payment arrangements.

But the need to build these foundations in both a strategic and practical way, is becoming clearer and clearer, healthcare IT leaders agree. And, even as the outlines for how to build such foundations become clearer, the good news is that organizations like Geisinger, VITL, and Orlando Health are already offering case studies that can be digested, emulated, and modified as necessary, by the leaders at countless other U.S. patient care organizations. There’s no question that those organizations are beginning to provide operational and implementational maps to that new world, that can be customized as desired to meet the individual needs of the diverse patient care organizations across the U.S. healthcare system, as they evolve forward into the new, data-driven world of patient care delivery and payment.

 

 


The Health IT Summits gather 250+ healthcare leaders in cities across the U.S. to present important new insights, collaborate on ideas, and to have a little fun - Find a Summit Near You!


/article/analytics/laying-foundations-new-healthcare-map-new-data-driven-landscape
/news-item/analytics/have-cios-top-priorities-2018-become-reality

Have CIOs’ Top Priorities for 2018 Become a Reality?

December 12, 2018
by Rajiv Leventhal, Managing Editor
| Reprints

In comparing healthcare CIOs’ priorities at the end of 2017 to this current moment, new analysis has found that core clinical IT goals have shifted from focusing on EHR (electronic health record) integration to data analytics.

In December 2017, hospitals CIOs said they planned to mostly focus on EHR integration and mobile adoption and physician buy-in, according to a survey then-conducted by Springfield, Va.-based Spok, a clinical communications solutions company, of College of Healthcare Information Management Executives (CHIME) member CIOs.

The survey from one year ago found that across hospitals, 40 percent of CIO respondents said deploying an enterprise analytics platform is a top priority in 2018. Seventy-one percent of respondents cited integrating with the EHR is a top priority, and 62 percent said physician adoption and buy-in for securing messaging was a top priority in the next 18 months. What’s more, 38 percent said optimizing EHR integration with other hospital systems with a key focus for 2018.

Spok researchers were curious whether their predictions became reality, so they analyzed several industry reports and asked a handful of CIOs to recap their experiences from 2018. The most up-to-date responses revealed that compared to last year when just 40 percent of CIOs said they were deploying an enterprise analytics platform in 2018, harnessing data analytics looks to be a huge priority in 2019: 100 percent of the CIOs reported this as top of mind.

Further comparisons on 2018 predictions to realities included:

  • 62 percent of CIOs predicted 2018 as the year of EHR integration; 75 percent reported they are now integrating patient monitoring data
  • 79 percent said they were selecting and deploying technology primarily for secure messaging; now, 90 percent of hospitals have adopted mobile technology and report that it’s helping improve patient safety and outcomes
  • 54 percent said the top secure messaging challenge was adoption/buy in; now, 51 percent said they now involve clinicians in mobile policy and adoption

What’s more, regarding future predictions, 87 percent of CIOs said they expect to increase spending on cybersecurity in 2019, and in three years from now, 60 percent of respondents expect data to be stored in a hybrid/private cloud.

CIOs also expressed concern regarding big tech companies such as Apple, Amazon and Google disrupting the healthcare market; 70 percent said they were somewhat concerned.

More From Healthcare Informatics

/article/analytics/how-one-community-hospital-leveraging-ai-bolster-its-care-pathways-process

How One Community Hospital is Leveraging AI to Bolster Its Care Pathways Process

December 6, 2018
by Heather Landi, Associate Editor
| Reprints
Click To View Gallery

Managing clinical variation continues to be a significant challenge facing most hospitals and health systems today as unwarranted clinical variation often results in higher costs without improvements to patient experience or outcomes.

Like many other hospitals and health systems, Flagler Hospital, a 335-bed community hospital in St. Augustine, Florida, had a board-level mandate to address its unwarranted clinical variation with the goal of improving outcomes and lowering costs, says Michael Sanders, M.D., Flagler Hospital’s chief medical information officer (CMIO).

“Every hospital has been struggling with this for decades, managing clinical variation,” he says, noting that traditional methods of addressing clinical variation management have been inefficient, as developing care pathways, which involves identifying best practices for high-cost procedures, often takes up to six months or even years to develop and implement. “By the time you finish, it’s out of date,” Sanders says. “There wasn’t a good way of doing this, other than picking your spots periodically, doing analysis and trying to make sense of the data.”

What’s more, available analytics software is incapable of correlating all the variables within the clinical, billing, analytics and electronic health record (EHR) databases, he notes.

Another limitation is that care pathways are vulnerable to the biases of the clinicians involved, Sanders says. “In medicine, what we typically do is we’ll have an idea of what we want to study, design a protocol, and then run the trial and collect the data that we think is important and then we try to disprove or prove our hypothesis,” he says.

Webinar

Experience New Records for Speed & Scale: High Performance Genomics & Imaging

Through real use cases and live demo, Frank Lee, PhD, Global Industry Leader for Healthcare & Life Sciences, will illustrate the architecture and solution for high performance data and AI...

Sanders says he was intrigued by advances in machine learning tools and artificial intelligence (AI) platforms capable of applying advanced analytics to identify hidden patterns in data.

Working with Palo Alto, Calif.-based machine intelligence software company Ayasdi, Flagler Hospital initiated a pilot project to use Ayasdi’s clinical variation management application to develop care pathways for both acute and non-acute conditions and then measure adherence to those pathways.

Michael Sanders, M.D.

Flagler targeted their treatment protocols for pneumonia as an initial care process model. “We kicked around the idea of doing sepsis first, because it’s a huge problem throughout the country. We decided to use pneumonia first to get our feet wet and figure out how to use the tool correctly,” he says.

The AI tools from Ayasdi revealed new, improved care pathways for pneumonia after analyzing thousands of patient records from the hospital and identifying the commonalities between those with the best outcomes. The application uses unsupervised machine learning and supervised prediction to optimally align the sequence and timing of care with the goal of optimizing for patient outcomes, cost, readmissions, mortality rate, provider adherence, and other variables.

The hospital quickly implemented the new pneumonia pathway by changing the order set in its Allscripts EHR system. As a result, for the pneumonia care path, Flagler Hospital saved $1,350 per patient and reduced the length of stay (LOS) for these patients by two days, on average. What’s more, the hospital reduced readmission by 7 times—the readmission rate dropped from 2.9 percent to 0.4 percent, hospital officials report. The initial work saved nearly $850,000 in unnecessary costs—the costs were trimmed by eliminating labs, X-rays and other processes that did not add value or resulted in a reduction in the lengths of stay or readmissions.

“Those results are pretty amazing,” Sanders says. “It’s taking our data and showing us what we need to pursue. That’s powerful.”

With the success of the pneumonia care pathway, Flagler Hospital leaders also deployed a new sepsis pathway. The hospital has expanded its plans for using Ayasdi to develop new care pathways, from the original plan of tackling 12 conditions over three years, to now tackling one condition per month. Future plans are to tackle heart failure, total hip replacement, chronic obstructive pulmonary disease (COPD), coronary artery bypass grafting (CABG), hysterectomy and diabetes, among other conditions. Flagler Hospital expects to save at least $20 million from this program in the next three years, according to officials.

Finding the “Goldilocks” group

Strong collaboration between IT and physician teams has been a critical factor in deploying the AI tool and to continue to successfully implement new care pathways, Sanders notes.

The effort to create the first pathway began with the IT staff writing structured query language (SQL) code to extract the necessary data from the hospital’s Allscripts EHR, enterprise data warehouse, surgical, financial and corporate performance systems. This data was brought into the clinical variation management application using the FHIR (Fast Healthcare Interoperability Resources) standard.

“That was a major effort, but some of us had been data scientists before we were physicians, and so we parameterized all these calls. The first pneumonia care path was completed in about nine weeks. We’ve turned around and did a second care path, for sepsis, which is much harder, and we’ve done that in two weeks. We’ve finished sepsis and have moved on to total hip and total knee replacements. We have about 18 or 19 care paths that we’re going to be doing over the next 18 months,” he says.

After being fed data of past pneumonia treatments, the software automatically created cohorts of patients who had similar outcomes accompanied by the treatments they received at particular times and in what sequence. The program also calculated the direct variable costs, average lengths of stay, readmission and mortality rates for each of those cohorts, along with the statistical significance of its conclusions. Each group had different comorbidities, such as diabetes, COPD and heart failure, which was factored into the application's calculations. At the push of a button, the application created a care path based on the treatment given to the patients in each cohort.

The findings were then reviewed with the physician IT group, or what Sanders calls the PIT crew, to select what they refer to as the “Goldilocks” cohort. “This is a group of patients that had the combination of low cost, short length of stay, low readmissions and almost zero mortality rate. We then can publish the care path and then monitor adherence to that care path across our physicians,” Sanders says.

The AI application uncovered relationships and patterns that physicians either would not have identified or would have taken much longer to identify, Sanders says. For instance, the analysis revealed that for patients with pneumonia and COPD, beginning nebulizer treatments early in their hospital stays improved outcomes tremendously, hospital leaders report.

The optimal events, sequence, and timing of care were presented to the physician team using an intuitive interface that allowed them to understand exactly why each step, and the timing of the action, was recommended. Upon approval, the team operationalized the new care path by revising the emergency-department and inpatient order sets in the hospital EHR.

Sanders says having the data generated by the AI software is critical to getting physicians on board with the project. “When we deployed the tool for the pneumonia care pathway, our physicians were saying, ‘Oh no, not another tool’,” Sanders says. “I brought in a PIT Crew (physician IT crew) and we went through our data with them. I had physicians in the group going through the analysis and they saw that the data was real. We went into the EMR to make sure the data was in fact valid, and after they realized that, then they began to look at the outcomes, the length of stay, the drop in readmissions and how the costs dropped, and they were on board right away.”

The majority of Flagler physicians are adhering to the new care path, according to reports generated by the AI software's adherence application. The care paths effectively sourced the best practices from the hospital’s best doctors using the hospital’s own patient groups, and that is key, Sanders notes.

“When we had conversations with physicians about the data, some would say, ‘My patient is sicker than yours,’ or ‘I have a different patient population.’ However, we can drill down to the physician’s patients and show the physician where things are. It’s not based on an ivory tower analysis, it’s based on our own data. And, yes, our patients, and our community, are unique—a little older than most, and we have a lot of Europeans here visiting. We have some challenges, but this tool is taking our data and showing us what we need to pursue. That’s pretty powerful.”

He adds, “It’s been amazing to see physicians rally around this. We just never had the tool before that could do this.”

While Flagler Hospital is a small community hospital with fewer resources than academic medical centers or larger health systems—for example, the hospital doesn’t have a dedicated data scientist but rather uses its in-house informatics staff for this project—the hospital is progressive in its use of advanced analytics, according to Sanders.

“We’ve been able to do a lot of querying ourselves, and we have some sepsis predictive models that we’ve created and put into place. We do a lot of real-time monitoring for sepsis and central line-associated bloodstream infections,” he says. “Central line-associated bloodstream infections are a bane for all hospitals. In the past year and a half, since we’ve put in our predictive model, we’ve had zero bloodstream infections, and that’s just unheard of.”

Sanders and his team plan to continue to use the AI tool to analyze new data and adjust the care paths according to new discoveries. As the algorithms find more effective and efficient ways to deliver care that result in better outcomes, Flagler will continue to improve its care paths and measure the adherence of its providers.

There continues to be growing interest, and also some hype, around AI tools, but Sanders notes that AI and machine learning are simply another tool. “Historically, what we’ve done is that we had an idea of what we wanted to do, conducted a clinical trial and then proved or disproved the hypothesis, based on the data that we collected. We have a tool with AI which can basically show us relationships that we didn’t know even existed and answer questions that we didn’t know to ask. I think it’s going to open up a tremendous pathway in medicine for us to both reduce cost, improve care and really take better care of our patients,” he says, adding, “When you can say that to physicians, they are on board. They respond to the data.”

 


Related Insights For: Analytics

/article/analytics/rsna-2018-intense-focus-artificial-intelligence

At RSNA 2018, An Intense Focus on Artificial Intelligence

November 29, 2018
by Mark Hagland, Editor-in-Chief
| Reprints
Artificial intelligence solutions—and discussions—were everywhere at RSNA 2018 this week

Artificial intelligence solutions—and certainly, the promotion of such solutions—were everywhere this year at the RSNA Conference, held this week at Chicago’s vast McCormick Place, where nearly 49,000 attendees attended clinical education sessions, viewed nearly 700 vendor exhibits. And AI and machine learning promotions, and discussions were everywhere.

Scanning the exhibit floor on Monday, Glenn Galloway, CIO of the Center for Diagnostic Imaging, an ambulatory imaging center in the Minneapolis suburb of St. Louis Park, Minn., noted that “There’s a lot of focus on AI this year. We’re still trying to figure out exactly what it is; I think a lot of people are doing the same, with AI.” In terms of whether what’s being pitched is authentic solutions, vaporware, or something in between, Galloway said, “I think it’s all that. I think there will be some solutions that live and survive. There are some interesting concepts of how to deliver it. We’ve been talking to a few folks. But the successful solutions are going to be very focused; not just AI for a lung, but for a lung and some very specific diagnoses, for example.” And what will be most useful? According to Galloway, “Two things: AI for the workflow and the quality. And there’ll be some interesting things for what it will do for the quality and the workflow.”

“Certainly, this is another year where machine learning is absolutely dominating the conversation,” said James Whitfill, M.D., CMO at Innovation Care Partners in Scottsdale, Ariz., on Monday. “In radiology, we continue to be aware of how the hype of machine learning is giving way to the reality; that it’s not a wholesale replacement of physicians. There have already been tremendous advances in, for example, interpreting chest x-rays; some of the work that Stanford’s done. They’ve got algorithms that can diagnose 15 different pathological findings. So there is true material advancement taking place.”

Meanwhile, Dr. Whitfill said, “At the same time, people are realizing that coming up with the algorithm is one piece, but that there are surprising complications. So you develop an algorithm on Siemens equipment, but when you to Fuji, the algorithm fails—it no longer reliably identifies pathology, because it turns out you have to train the algorithm not just on examples form just one manufacturer, but form lots of manufacturers. We continue to find that these algorithms are not as consistent as identifying yourself on Facebook, for example. It’s turning out that radiology is way more complex. We take images on lots of different machines. So huge strides are being made,” he said. “But it’s very clear that human and machine learning together will create the breakthroughs. We talk about physician burnout, and even physicians leaving. I think that machine learning offers a good chance of removing a lot of the drudgery in healthcare. If we can automate some processes, then it will free up our time for quality judgment, and also to spend time talking to patients, not just staring at the screen.”

Webinar

Experience New Records for Speed & Scale: High Performance Genomics & Imaging

Through real use cases and live demo, Frank Lee, PhD, Global Industry Leader for Healthcare & Life Sciences, will illustrate the architecture and solution for high performance data and AI...

Looking at the hype cycle around AI

Of course, inevitably, there was talk around the talk of the hype cycle involving artificial intelligence. One of those engaging in that discussion was Paul Chang, M.D.., a practicing radiologist and medical director of enterprise imaging at the University of Chicago. Dr. Chang gave a presentation on Tuesday about AI. According a report by Michael Walter in Radiology Business, Dr. Chang said, “AI is not new or spooky. It’s been around for decades. So why the hype?” He described computer-aided detection (CAD) as a form of artificial intelligence, one that radiologists have been making use of for years.

Meanwhile, with regard to the new form of AI, and the inevitable hype cycle around emerging technologies, Dr. Chang said during his presentation that “When you’re going up the ride, you get excited. But then right at the top, before you are about to go down, you have that moment of clarity—‘What am I getting myself into?’—and that’s where we are now. We are upon that crest of magical hype and we are about to get the trench of disillusionment.” Still, he told his audience, “It is worth the rollercoaster of hype. But I’m here to tell you that it’s going to take longer than you think.”

So, which artificial intelligence-based solutions will end up going the distance? On a certain level, the answer to that question is simple, said Joe Marion, a principal in the Waukesha, Wis.-based Healthcare Integration Strategies LLC, and one of the imaging informatics industry’s most respected observers. “I think it’s going to be the value of the product,” said Marion, who has participated in 42 RSNA conferences; “and also the extent to which the vendors will make their products flexible in terms of being interfaced with others, so there’s this integration aspect, folding into vendor A, vendor B, vendor C, etc. So for a third party, the more they reach out and create relationships, the more successful they’ll be. A lot of it will come down to clinical value, though. Watson has had problems in that people have said, it’s great, but where’s the clinical value? So the ones that succeed will be the ones that find the most clinical value.”

Still, Marion noted, even the concept of AI, as applied to imaging informatics, remains an area with some areas lacking in clarity. “The reality, he said, “is that I think it means different things to different people. The difference between last year and this year is that some things are coming to fruition; it’s more real. And so some vendors are offering viable solutions. The message I’m hearing from vendors this year is, I have this platform, and if a third party wants to develop an application or I develop an application, or even an academic institution develops a solution, I can run it on my platform. They’re trying to become as vendor-agnostic as possible.”

Marion expressed surprise at the seemingly all-encompassing focus on artificial intelligence this year, given the steady march towards value-based healthcare-driven mandates. “Outside of one vendor, I’m not really seeing a whole lot of emphasis this year on value-based care; that’s disappointing,” Marion said. “I don’t know whether people don’t get it or not about value-based care, but the vendors are clearly more focused on AI right now.”

Might next year prove to be different? Yes, absolutely, especially given the coming mandates coming out of the Protecting Access to Medicare Act (PAMA), which will require referring providers to consult appropriate use criteria (AUC) prior to ordering advanced diagnostic imaging services—CT, MR, nuclear medicine and PET—for Medicare patients. The federal Centers for Medicare and Medicaid Services (CMS) will progress with a phased rollout of the CDS mandate, as the American College of Radiology (ACR) explains on its website, with voluntary reporting of the use of AUC taking place until December 2019, and mandatory reporting beginning in January 2020.

But for now, this certainly was the year of the artificial intelligence focus at the RSNA Conference. Only time will tell how that focus plays out in the imaging and imaging informatics vendor space within the coming 12 months, before RSNA 2019 kicks off one year from now, at the conference’s perennial location, McCormick Place.

 

 


See more on Analytics

betebet sohbet hattı betebet bahis siteleringsbahis