Study: Researchers Use EHR Data to Predict Future Chronic Opioid Use | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

Study: Researchers Use EHR Data to Predict Future Chronic Opioid Use

March 23, 2018
by Heather Landi
| Reprints

Researchers at the University of Colorado Anschutz Medical Campus are working to develop statistical models to better predict which patients will be prescribed opioid medications long-term following discharge from a hospital stay.

In a study published in the Journal of General Internal Medicine, the researchers note that opioids are commonly prescribed in the hospital, yet, little is known about which patients will progress to chronic opioid therapy (COT) following discharge.

In the U.S. last year, more than 63,000 people died of a drug overdose, with opioids involved in 75 percent of those deaths. According to the 2015 National Survey of Drug Use and Health, over 2 million people in the US had a prescription opioid use disorder.

“Doctors and patients are increasingly aware of the dangers associated with overprescribing of opioids,” Susan Calcaterra, a fellow in addiction medicine at the CU School of Medicine, said in a release about the study. “We can assist physicians in making informed decisions about opioid prescribing by identifying patient characteristics which put them at risk progressing to chronic opioid use.

Researchers aimed to develop a prediction model to identify hospitalized patients at highest risk of progressing to chronic opioid use following hospital discharge. To develop the prediction model, they accessed data available in the electronic health record (EHR) from Denver Health Medical Center, an urban, safety net hospital.

Researchers defined chronic opioid therapy (COT) as either receiving a 90-day or greater supply of oral opioids with less than a 30-day gap in supply over a 180-day period, or filling ten or more opioid prescriptions over one year.

By accessing EHR data, researchers identified patient-specific variables which were highly associated with the progression to COT. These variables included having a history of substance use disorder, past year receipt of a benzodiazepine, an opioid medication or a non-opioid analgesic, receipt of an opioid at hospital discharge and high opioid requirements during hospitalization. Having a surgical procedure during the hospitalization was not associated with progression to COT, according to the researchers.

The model correctly predicted chronic opioid therapy in 79 percent of the patients and no COT correctly in 78 percent of the patients.

According to the authors, no prediction model has been published to identify hospitalized patients at high-risk of future COT. There are useful prediction tools to assess the patient’s risk of opioid misuse including the Screener and Opioid Assessment for Patients with Pain (SOAPP-R) and the Opioid Risk Tool (ORT). “However, these tools have not been validated in the hospital setting and they can be too time-consuming to consistently administer in a busy clinical setting,” the researchers wrote.

 “Application of such a predictive model within the EHR could identify patients at high risk for future chronic opioid use to allow clinicians to provide early patient education about pain management strategies and, when able, to wean opioids prior to discharge while incorporating alternative therapies for pain into discharge planning,” the researchers wrote.

“This prediction model could be incorporated into the electronic health record and would activate when a physician orders opioid medication. It would inform the physician of their patient’s risk for developing COT and may impact their prescribing practices,” Calcaterra said.

She continued, “All of the data required to assess risk are already available in the electronic health record, the physician would not need to input additional information. This tool would be inexpensive to implement and helpful in busy hospital settings where physicians make important health care decisions on patients they may have only met the day before. Researchers plan to validate this model in other health care systems to tests its ability to predict COT in other patient populations.”

Get the latest information on Health IT and attend other valuable sessions at this two-day Summit providing healthcare leaders with educational content, insightful debate and dialogue on the future of healthcare and technology.

Learn More

Topics

News

Healthcare Execs Anticipate High Cost Returns from Predictive Analytics Use

Healthcare executives are dedicating budget to predictive analytics, and are forecasting significant cost savings in return, according to new research from the Illinois-based Society of Actuaries.

Adam Boehler Tapped by Azar to Serve as Senior Value-Based Care Advisor

Adam Boehler, currently director of CMMI, has also been named the senior advisor for value-based transformation and innovation, HHS Secretary Alex Azar announced.

Vivli Launches Clinical Research Data-Sharing Platform

On July 19 a new global data-sharing and analytics platform called Vivli was unveiled. The nonprofit group’s mission is to promote, coordinate and facilitate scientific sharing and reuse of clinical research data.

Survey: More Effective IT Needed to Improve Patient Safety

In a Health Catalyst survey, physicians, nurses and healthcare executives said ineffective information technology, and the lack of real-time warnings for possible harm events, are key obstacles to achieving their organizations' patient safety goals.

Physicians Still Reluctant to Embrace Virtual Tech, Survey Finds

While consumers and physicians agree that virtual healthcare holds great promise for transforming care delivery, physicians still remain reluctant to embrace the technologies, according to a new Deloitte Center for Health Solutions survey.

Geisinger, AstraZeneca Partner on Asthma App Suite

Geisinger has partnered with pharmaceutical company AstraZeneca to create a suite of products that integrate into the electronic health record and engage asthma patients and their providers in co-managing the disease.