Study: Statistical Model Could Forecast Future Ailments | Healthcare Informatics Magazine | Health IT | Information Technology Skip to content Skip to navigation

Study: Statistical Model Could Forecast Future Ailments

June 4, 2012
by Gabriel Perna
| Reprints

According to a study from the University of Washington (UW), through thorough analysis of medical records from patients, statisticians have created a statistical model for predicting what other medical problems a patient might encounter. This, according to UW, would be similar to how Netflix recommends movies and TV shows for viewers. The algorithm makes predictions based on what a patient has already experienced as well as the experiences of other patients showing a similar medical history.

"This provides physicians with insights on what might be coming next for a patient, based on experiences of other patients. It also gives a predication that is interpretable by patients," Tyler McCormick, lead author of the paper and an assistant professor of statistics and sociology at UW, said in a statement.

According to McCormick, this type of predictive algorithm has rarely been used in a medical setting. He says the difference between his model and others is it shares information across patients who have similar health problems. This, he says, allows for better predictions when details of a patient's medical history are sparse, such as when a patient doesn’t have a lengthy file listing ailments and drug prescriptions.

"We're looking at each sequence of symptoms to try to predict the rest of the sequence for a different patient," McCormick said.     

In addition, the algorithm can also accommodate situations where it's statistically difficult to predict a less common condition. An example, McCormick cites, is most patients do not experience strokes, and accordingly most models could not predict one because they only factor in an individual patient's medical history with a stroke. His model uses medical histories of patients who went on to have a stroke and uses that analysis to make a stroke prediction.

The authors used medical records obtained from a multiyear clinical drug trial involving tens of thousands of patients aged 40 and older. They included other demographic details, such as gender and ethnicity, as well as patients' histories of medical complaints and prescription medications.

Of the 1,800 medical conditions in the dataset, most of them – 1,400 – occurred fewer than 10 times. They came up with a statistical modeling technique to account for these rarer conditions. "We hope that this model will provide a more patient-centered approach to medical care and to improve patient experiences," McCormick said.

The algorithm will be published in an upcoming issue of the journal Annals of Applied Statistics.

Get the latest information on Finance and Revenues and attend other valuable sessions at this two-day Summit providing healthcare leaders with educational content, insightful debate and dialogue on the future of healthcare and technology.

Learn More



NewYork-Presbyterian, Walgreens Partner on Telemedicine Initiative

NewYork-Presbyterian and Walgreens are collaborating to bring expanded access to NewYork-Presbyterian’s healthcare through new telemedicine services, the two organizations announced this week.

ONC Releases Patient Demographic Data Quality Framework

The Office of the National Coordinator for Health IT (ONC) developed a framework to help health systems, large practices, health information exchanges and payers to improve their patient demographic data quality.

AMIA, Pew Urge Congress to Ensure ONC has Funding to Implement Cures Provisions

The Pew Charitable Trusts and the American Medical Informatics Association (AMIA) have sent a letter to congressional appropriators urging them to ensure that ONC has adequate funding to implement certain 21st Century Cures Act provisions.

Former Michigan Governor to Serve as Chair of DRIVE Health

Former Michigan Governor John Engler will serve as chair of the DRIVE Health Initiative, a campaign aimed at accelerating the U.S. health system's transition to value-based care.

NJ Medical Group Launches Statewide HIE, OneHealth New Jersey

The Medical Society of New Jersey (MSNJ) recently launched OneHealth New Jersey, a statewide health information exchange (HIE) that is now live.

Survey: 70% of Providers Using Off-Premises Computing for Some Applications

A survey conducted by KLAS Research found that 70 percent of healthcare organizations have moved at least some applications or IT infrastructure off-premises.